Abstract
In the context of softly broken N=2 supersymmetric quantum chromodynamics (SQCD), with a hierarchical gauge symmetry breaking SU(N+1) -> U(N) -> 1, at scales v1 and v2, respectively, where v1 >> v2, we construct monopole-vortex complex soliton-like solutions and examine their properties. They represent the minimum of the static energy under the constraint that the monopole and antimonopole positions sitting at the extremes of the vortex are kept fixed. They interpolate the 't Hooft-Polyakov-like regular monopole solution near the monopole centers and a vortex solution far from them and in between. The main result, obtained in the theory with Nf=N equal-mass flavors, is concerned with the existence of exact orientational CP(N-1) zero modes, arising from the exact color-flavor diagonal SU(N)_{C+F} global symmetry. The "unbroken" subgroup SU(N) \subset SU(N+1) with which the na\"ive notion of non-Abelian monopoles and the related difficulties were associated, is explicitly broken at low energies. The monopole transforms nevertheless according to the fundamental representation of a new exact, unbroken SU(N) symmetry group, as does the vortex attached to it. We argue that this explains the origin of the dual non-Abelian gauge symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.