Abstract

Let [Formula: see text] be a group and [Formula: see text] an inverse closed subset of [Formula: see text]. By a Cayley graph [Formula: see text], we mean the graph whose vertex set is the set of elements of [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text]. A group [Formula: see text] is called a CI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for some automorphism [Formula: see text] of [Formula: see text]. A finite group [Formula: see text] is called a BI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for all positive integers [Formula: see text], where [Formula: see text] denotes the set [Formula: see text]. It was asked by László Babai [Spectra of Cayley graphs, J. Combin. Theory Ser. B 27 (1979) 180–189] if every finite group is a BI-group; various examples of finite non-BI-groups are presented in [A. Abdollahi and M. Zallaghi, Character sums of Cayley graph, Comm. Algebra 43(12) (2015) 5159–5167]. It is noted in the latter paper that every finite CI-group is a BI-group and all abelian finite groups are BI-groups. However, it is known that there are finite abelian non-CI-groups. Existence of a finite non-abelian BI-group which is not a CI-group is the main question which we study here. We find two non-abelian BI-groups of orders 20 and 42 which are not CI-groups. We also list all BI-groups of orders up to 30.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.