Abstract
We describe hierarchies of exact string backgrounds obtained as non-Abelian cosets of orthogonal groups and having a space--time realization in terms of gauged WZW models. For each member in these hierarchies, the target-space backgrounds are generated by the ``boundary'' backgrounds of the next member. We explicitly demonstrate that this property holds to all orders in $\alpha'$. It is a consequence of the existence of an integrable marginal operator build on, generically, non-Abelian parafermion bilinears. These are dressed with the dilaton supported by the extra radial dimension, whose asymptotic value defines the boundary. Depending on the hierarchy, this boundary can be time-like or space-like with, in the latter case, potential cosmological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.