Abstract

BackgroundThe aim of this study was to develop a nomogram for predicting the risk of preterm birth in women undergoing in vitro fertilization (IVF) cycles.MethodsA retrospective study of 4266 live birth cycles collected from January 2016 to October 2021 at the Center for Reproductive Medicine, First Hospital of Jilin University was performed. The sample size was sufficient based on the minimal ten events per variable (EPV) rule. The primary outcome of this study was preterm birth. The cycles were divided into the preterm birth group (n = 827) and the full-term delivery group (n = 3439). A nomogram was established based on the multivariate logistic regression analysis results. The area under the curve (AUC) was calculated to assess the prediction accuracy of the nomogram model. The calibration curve was used to measure the calibration of the nomogram.ResultsMultivariate logistic regression analyses showed that female obesity or overweight (OR = 1.366, 95% CI: 1.111–1.679; OR = 1.537, 95% CI: 1.030–2.292), antral follicle count (AFC) of more than 24 (OR = 1.378, 95% CI: 1.035–1.836), multiple pregnancies (OR = 6.748, 95% CI: 5.559–8.190), gestational hypertension (OR = 9.662, 95% CI: 6.632–14.078) and gestational diabetes (OR = 4.650, 95% CI: 2.289–9.445) were the independent risk factors for preterm birth in IVF patients. The area under curve (AUC) under the receiver operating characteristic (ROC) curve in the prediction model was 0.781(95%CI: 0.763–0.799). The calibration curve of the nomogram showed that the prediction model had a good calibration.ConclusionsWe used five risk factors to conduct a nomogram to predict preterm birth rates for patients undergoing IVF cycles. This nomogram can provide a visual assessment of the risk of preterm birth for clinical consultation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.