Abstract

The study investigated the potential of the combined use of dynamic contrast-enhanced MRI and diffusion-weighted imaging in predicting the pathological complete response (pCR) of neoadjuvant chemotherapy (NAC) after two cycles of NAC. Eighty-seven patients with breast cancer who underwent MR examination before and after two cycles of NAC were enrolled. The patients were randomly assigned to a training cohort and a validation cohort (3:1 ratio). MRI parameters including tumor longest diameter, time-signal intensity curve, early enhanced ratio (E90), maximal enhanced ratio and ADC value were measured, and percentage change in MRI parameters were calculated. Univariate analysis and multivariate logistic regression analysis were used to evaluate independent predictors of pCR in the training cohort. The validation cohort was used to test the prediction model, and the nomogram was created based on the prediction model. This study demonstrated that the ADC value after two cycles of NAC (OR = 1.041, 95% CI (1.002, 1.081); p = 0.037), percentage decrease in E90 (OR = 0.927, 95% CI (0.881, 0.977); p =0.004) and percentage decrease in tumor size (OR = 0.948, 95% CI (0.909, 0.988); p = 0.011) were significantly important for independently predicting pCR. The prediction model yielded AUC of 0.939 and 0.944 in the training cohort and the validation cohort, respectively. The combined use of dynamic contrast-enhanced MRI and diffusion-weighted imaging could accurately predict pCR after two cycles of NAC. The prediction model and the nomogram had strong predictive value to NAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.