Abstract

Nominal logic is an extension of first-order logic with equality, name-binding, renaming via name-swapping and freshness of names. Contrarily to lambda-terms, in nominal terms, bindable names, called atoms, and instantiable variables are considered as distinct entities. Moreover, atoms are capturable by instantiations, breaking a fundamental principle of the lambda-calculus. Despite these differences, nominal unification can be seen from a higher-order perspective. From this view, we show that nominal unification can be quadratically reduced to a particular fragment of higher-order unification problems: higher-order pattern unification. We also prove that the translation preserves most generality of unifiers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call