Abstract

This article proposes new parameters for the practical design of circular high-strength concrete (HSC) columns confined with an innovative Steel Strapping Tensioning Technique (SSTT) using a nominal curvature approach. Previous experimental research has proven the effectiveness of the SSTT at providing active confinement and enhancing the ductility of HSC columns, but to date no practical procedures are available so that the technique can be widely adopted in design practice. The proposed design approach is based on results from segmental analyses of slender SSTT-confined circular columns subjected to eccentric loads. The results obtained from the analyses are used to determine the variables governing the design of such columns. The use of the proposed design parameters predicts conservatively the capacity of small-scale slender HSC circular columns confined using the SSTT, and can be thus used in the practical design of reinforced concrete (RC) structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call