Abstract

The Internet of Things (IoT) is expected to provide ubiquitous wireless machine-type communication devices and extensive information collection, resulting in an unprecedented amount of privacy and secrets exposed to the radio space. Security issues become a major restriction on the further development of IoT. However, secure transmissions in IoT are challenged by low complexity limitation and massive connectivity demand, especially by the use of short packets, which are expected to satisfy the delay requirement in ultra-reliable low-latency communications. Physical layer security can be employed without the constraints of packet length and number of connections. Nevertheless, due to the limitations of complexity, not all existing PLS techniques can be adopted in IoT. Non-orthogonal multiple access (NOMA) is a promising technique for increasing connectivity and reducing delay. Assuming an eavesdropper (Eve) is capable of the same detection capability as legitimate users, this article further exploits the inherent characteristics of NOMA to secure short-packet communications in IoT networks without introducing extra security mechanisms. Both downlink and uplink NOMA schemes are introduced to secure transmission by deliberately increasing the co-channel interference at Eve, which can be viewed as a special cooperative jamming strategy. Simulations show that in both uplink and downlink, although secrecy performance deteriorates in short-packet communications, the performance gains of NOMA over traditional orthogonal multiple access are significant. Finally, we analyze the challenges and future trends in this emerging area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call