Abstract

The fundamental process of ribosome biogenesis requires hundreds of factors and takes place in the nucleolus. This process has been most thoroughly characterized in baker's yeast and is generally well conserved from yeast to humans. However, some of the required proteins in yeast are not found in humans, raising the possibility that they have been replaced by functional analogs. Our objective was to identify non-conserved interaction partners for the human ribosome biogenesis factor, hUTP4/Cirhin, since the R565W mutation in the C-terminus of hUTP4/Cirhin was reported to cause North American Indian childhood cirrhosis (NAIC). By screening a yeast two-hybrid cDNA library derived from human liver, and through affinity purification followed by mass spectrometry, we identified an uncharacterized nucleolar protein, NOL11, as an interaction partner for hUTP4/Cirhin. Bioinformatic analysis revealed that NOL11 is conserved throughout metazoans and their immediate ancestors but is not found in any other phylogenetic groups. Co-immunoprecipitation experiments show that NOL11 is a component of the human ribosomal small subunit (SSU) processome. siRNA knockdown of NOL11 revealed that it is involved in the cleavage steps required to generate the mature 18S rRNA and is required for optimal rDNA transcription. Furthermore, abnormal nucleolar morphology results from the absence of NOL11. Finally, yeast two-hybrid analysis shows that NOL11 interacts with the C-terminus of hUTP4/Cirhin and that the R565W mutation partially disrupts this interaction. We have therefore identified NOL11 as a novel protein required for the early stages of ribosome biogenesis in humans. Our results further implicate a role for NOL11 in the pathogenesis of NAIC.

Highlights

  • Ribosome biogenesis is one of the most fundamental of cellular processes

  • nucleolar protein 11 (NOL11) is localized to the nucleolus, the site of ribosome biogenesis, and associates with proteins in the small subunit (SSU) processome, the large ribonucleoprotein particle that is required for maturation of the small ribosomal subunit 18S rRNA

  • We have established that NOL11 is involved in ribosome biogenesis, but is it a t-UTP? Affinity purification and mass spectrometry of hUTP4/Cirhin-associated proteins place NOL11 in a complex that contains four out of the five known human tUTPs, strongly suggesting that NOL11 is a t-UTP

Read more

Summary

Introduction

Ribosome biogenesis is one of the most fundamental of cellular processes. It is so important for cell growth that in a HeLa cell, 7500 ribosomal subunits are made every minute [1] and in eukaryotes, 60% of total cellular transcription is devoted to ribosome biogenesis [2]. The pre-rRNA undergoes multiple cleavage and chemical modification events before giving rise to the mature 18S, 5.8S, and 28S rRNAs [reviewed in 3]. The cleavages that free the mature 18S small ribosomal subunit rRNA are mediated by a large ribonucleoprotein particle called the small subunit (SSU) processome, which contains over 70 proteins and the U3 small nucleolar RNA (snoRNA) [4,5]. The SSU processome assembles cotranscriptionally on the pre-rRNA [6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call