Abstract

I employ random-matrix methods to set up and solve statistical models of noisy nonunitary dynamics that appear in the context of monitored quantum systems. The models cover a range of scenarios combining random dynamics and measurements of variable strength of one or several qubits. The combined dynamics drive the system into states whose statistics reflect the competition of randomizing unitary evolution and the measurement-induced backaction collapsing the state. These effects are mediated by entanglement, as I describe in detail by analytical results. For the paradigmatic case of monitoring via a single designated qubit, this reveals a simple statistical mechanism, in which the monitoring conditions the state of the monitored qubit, which then imposes statistical constraints on the remaining quantities of the system. For the case of monitoring several qubits with prescribed strength, the developed formalism allows one to set up the statistical description and solve it numerically. Finally, I also compare the analytical results to the monitored dynamics of a quantum kicked top, revealing two regimes where the statistical model either describes the full stationary dynamics, or resolves time scales during particular parts of the evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.