Abstract
Quantum-empowered electromagnetic transients program (QEMTP) is a promising paradigm for tackling EMTP’s computational burdens. Nevertheless, no existing studies truly achieve a practical and scalable QEMTP operable on today’s noisy-intermediate-scale quantum (NISQ) computers. The strong reliance on noise-free and fault-tolerant quantum devices–which appears to be decades away– hinder practical applications of current QEMTP methods. This paper devises a NISQ-QEMTP methodology which for the first time transitions the QEMTP operations from ideal, noise-free quantum simulators to real, noisy quantum computers. The main contributions lie in: (1) design of shallow-depth QEMTP quantum circuits for mitigating noises on NISQ quantum devices; (2) practical QEMTP linear solvers incorporating executable quantum state preparation and measurements for nodal voltage computations; (3) a noise-resilient QEMTP algorithm leveraging quantum resources logarithmically scaled with power system dimension; (4) a quantum shifted frequency analysis (QSFA) for accelerating QEMTP by exploiting dynamic phasor simulations with larger time steps; (5) a systematical analysis on QEMTP’s performance under various noisy quantum environments. Extensive experiments systematically verify the accuracy, efficacy, universality and noise-resilience of QEMTP on both noise-free simulators and IBM real quantum computers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.