Abstract
We consider the problem of identifying a linear, time-invariant system from its noisy input/output data. The input and output are assumed to be non-Gaussian, while the input and output noises are assumed to be mutually correlated, colored, and Gaussian. Using cross- and auto-cumulants, we extend the well-known Steiglitz-McBride (1965) identification method to cumulant domains, and show that it is consistent under a certain third-order persistency of excitation condition. By comparison, the Steiglitz-McBride method is not consistent when either input noise is present or when the output noise is colored. For an empirical assessment, we provide simulations that demonstrate the proposed method's usefulness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.