Abstract
MotivationSequence-based methods for phylogenetic reconstruction from (nucleic acid) sequence data are notoriously plagued by two effects: homoplasies and alignment errors. Large evolutionary distances imply a large number of homoplastic sites. As most protein-coding genes show dramatic variations in substitution rates that are not uncorrelated across the sequence, this often leads to a patchwork pattern of (i) phylogenetically informative and (ii) effectively randomized regions. In highly variable regions, furthermore, alignment errors accumulate resulting in sometimes misleading signals in phylogenetic reconstruction.ResultsWe present here a method that, based on assessing the distribution of character states along a cyclic ordering of the taxa, allows the identification of phylogenetically uninformative homoplastic sites in a multiple sequence alignment. Removal of these sites appears to improve the performance of phylogenetic reconstruction algorithms as measured by various indices of "tree quality". In particular, we obtain more stable trees due to the exclusion of phylogenetically incompatible sites that most likely represent strongly randomized characters.SoftwareThe computer program noisy implements this approach. It can be employed to improving phylogenetic reconstruction capability with quite a considerable success rate whenever (1) the average bootstrap support obtained from the original alignment is low, and (2) there are sufficiently many taxa in the data set – at least, say, 12 to 15 taxa. The software can be obtained under the GNU Public License from .
Highlights
Sequence conservation in real data often varies dramatically along multiple sequence alignments ranging from constant sites to sequence positions that have effectively been randomized
It can be employed to improving phylogenetic reconstruction capability with quite a considerable success rate whenever (1) the average bootstrap support obtained from the original alignment is low, and (2) there are sufficiently many taxa in the data set – at least, say, 12 to 15 taxa
In the context of phylogenetic reconstruction, homoplastic sites – i.e., those in which the same character appears in two distinct sequences by convergence rather than by common ancestry – pose a well-known problem
Summary
We present here a method that, based on assessing the distribution of character states along a cyclic ordering of the taxa, allows the identification of phylogenetically uninformative homoplastic sites in a multiple sequence alignment. Removal of these sites appears to improve the performance of phylogenetic reconstruction algorithms as measured by various indices of "tree quality". We obtain more stable trees due to the exclusion of phylogenetically incompatible sites that most likely represent strongly randomized characters. Software: The computer program noisy implements this approach. The software can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/noisy/
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.