Abstract

We present two algorithms for large-scale noisy low-rank Euclidean distance matrix completion problems, based on semidefinite optimization. Our first method works by relating cliques in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial procedure that is provably robust and partly parallelizable. Our second algorithm is a first-order method for maximizing the trace---a popular low-rank inducing regularizer---in the formulation of the problem with a constrained misfit. Both of the methods output a point configuration that can serve as a high-quality initialization for local optimization techniques. Numerical experiments on large-scale sensor localization problems illustrate the two approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.