Abstract

The presence of noise on hyperspectral images causes degradation and hinders efficiency of processing for land cover classification. In this sense, removing noise or detecting noisy bands automatically on hyperspectral images becomes a challenge for research in remote sensing. To cope this problem, an integrated model (SAE-1DCNN) is presented in this study, based on Stacked-Autoencoders (SAE) and Convolutional Neural Networks (CNN) algorithms for the selection and exclusion of noisy bands. The proposed model employs convolutional layers to improve the performance of autoencoders focused on discriminating the training data by analyzing the hyperspectral signature of the pixel. Thus, in the SAE-1DCNN model, information can be compressed, and then redundant information can be detected and extracted by taking advantage of the efficiency of the deep architecture based on the convolutional and pooling layers. Hyperspectral data from the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor were used to evaluate the performance of the proposed automatic method based on feature selection. The results showed effectiveness to identify noisy bands automatically, suggesting that the proposed methodology was found to be promising and can be an alternative to identify noisy bands within the scope of hyperspectral data pre-processing.
 Keywords: noisy bands; feature selection; convolutional neural network; stacked-autoencoders; hyperspectral data

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.