Abstract

A noise-sidebands-free and ultra-low relative intensity noise (RIN) 1.5 μm single-frequency fiber laser is demonstrated for the first time to our best knowledge. Utilizing a self-injection locking framework and a booster optical amplifier, the noise sidebands with relative amplitudes as high as 20 dB are completely suppressed. The RIN is remarkably reduced by more than 64 dB at the relaxation oscillation peak to retain below −150 dB/Hz in a frequency range from 75 kHz to 50 MHz, while the quantum noise limit is −152.9 dB/Hz. Furthermore, a laser linewidth narrower than 600 Hz, a polarization-extinction ratio of more than 23 dB, and an optical signal-to-noise ratio of more than 73 dB are acquired simultaneously. This noise-sidebands-free and ultra-low-RIN single-frequency fiber laser is highly competitive in advanced coherent light detection fields including coherent Doppler wind lidar, high-speed coherent optical communication, and precise absolute distance coherent measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call