Abstract
Voice conversion has made great progress in the past few years under the studio-quality test scenario in terms of speech quality and speaker similarity. However, in real applications, test speech from source speaker or target speaker can be corrupted by various environment noises, which seriously degrade the speech quality and speaker similarity. In this paper, we propose a novel encoder–decoder based noise-robust voice conversion framework, which consists of a speaker encoder, a content encoder, a decoder, and two domain adversarial neural networks. Specifically, we integrate disentangling speaker and content representation technique with domain adversarial training technique. Domain adversarial training makes speaker representations and content representations extracted by speaker encoder and content encoder from clean speech and noisy speech in the same space, respectively. In this way, the learned speaker and content representations are noise-invariant. Therefore, the two noise-invariant representations can be taken as input by the decoder to predict the clean converted spectrum. The experimental results demonstrate that our proposed method can synthesize clean converted speech under noisy test scenarios, where the source speech and target speech can be corrupted by seen or unseen noise types during the training process. Additionally, both speech quality and speaker similarity are improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.