Abstract

We study the phenomenon of noise-induced torus bursting on the base of the three-dimensional Hindmarsh-Rose neuron model forced by additive noise. We show that in the parametric zone close to the Neimark-Sacker bifurcation, where the deterministic system exhibits rapid tonic spiking oscillations, random disturbances can turn tonic spiking into bursting, which is characterized by the formation of a peculiar dynamical structure resembling that of a torus. This phenomenon is confirmed by the changes in dispersion of random trajectories as well as the power spectral density and interspike intervals statistics. In particular, we show that as noise increases, the system undergoes P and D bifurcations, transitioning from order to chaos. We ultimately characterize the transition from stochastic (tonic) spiking to bursting by stochastic sensitivity functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.