Abstract

We study in phase space a zero-dimensional system of Brownian particles which move in a periodic potential and subject to an internal time derivative Ornstein–Uhlenbeck noise. To resolve the Fokker–Planck equation in such a case, we propose an approximate analytical method. The theoretical predictions exhibit a second order noise-induced nonequilibrium phase transition, which is confirmed by numerical simulation results. The phase transition brings the system from an ergodicity to a nonergodicity phase as the potential barrier height decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.