Abstract
Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation–maximization algorithm because many clustering algorithms are special cases of the expectation–maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.