Abstract

This study solves the problem of unknown(UNK) word in machine translation of agglutinative language in two ways. (1) a multi-granularity preprocessing based on morphological segmentation is used for the input of generative adversarial net. (2) a filtering mechanism is further used to identify the most suitable granularity for the current input sequence. The experimental results show that our approach has achieved significant improvement in the two representative agglutinative language machine translation tasks, including Mongolian\(\rightarrow \)Chinese and Japanese\(\rightarrow \)English.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.