Abstract
In this paper, we investigate coherence protection of a quantum system coupled to a hierarchical environment by utilizing noise. As an example, we solve the Jaynes-Cummings (J-C) model in presence of both a classical and a quantized noise. The master equation is derived beyond the Markov approximation, where the influence of memory effects from both noises is taken into account. More importantly, we find that the performance of the coherence protection sensitively depends on the non-Markovian properties of both noises. By analyzing the mathematical mechanism of the coherence protection, we show the decoherence caused by a non-Markovian noise with longer memory time can be suppressed by another Markovian noise with shorter memory time. Last but not least, as an outlook, we try to analyze the connection between the atom-cavity entanglement and the atomic coherence, then discuss the possible clue to search for the required noise. The results presented in this paper show the possibility of protecting coherence by utilizing noise and may open a new path to design noise-assisted coherence protection schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.