Abstract

In this paper, we propose a method for estimating a signal-to-noise ratio (SNR) in order to improve the performance of a dual-microphone speech enhancement algorithm. The proposed method is able to reliably estimate both a priori and a posteriori SNRs by exploring a direction-of-arrival (DOA)-based local SNR that is defined by using spatial cues obtained from dual-microphone signals. The estimated a priori and a posteriori SNRs are then incorporated into a Wiener filter. Consequently, it is shown from an objective perceptual evaluation of speech quality (PESQ) comparison and a subjective listening test that a speech enhancement algorithm employing the proposed SNR estimate outperforms those using conventional single- or dual-microphone speech enhancement algorithms such as the Wiener filter, beamformer, or phase error-based filter under different noise conditions ranging from 0 to 20 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.