Abstract

Much of the research on sound transmission through the aircraft fuselage into the interior of aircraft has considered coupling of the entire cylinder to the acoustic modes of the enclosure. Yet, much of the work on structural acoustic control of sound radiation has focused on reducing sound radiation from individual panels into an acoustic space. Research by the authors seeks to bridge this gap by considering the transmission of sound from individual panels on the fuselage to the interior of the aircraft. As part of this research, an analytical model of a curved panel, with attached piezoelectric actuators, subjected to a static pressure load was previously developed. In the present work, the analytical model is extended to consider the coupling of a curved panel to the interior acoustics of a rigid-walled cylinder. Insight gained from an accurate analytical model of the dynamics of the noise transmission from the curved panels of the fuselage into the cylindrical enclosure of an aircraft is essential to the development of feedback control systems for the control of stochastic inputs, such as turbulent boundary layer excitation. The criteria for maximal structural acoustic coupling between the modes of the curved panel and the modes of the cylindrical enclosure are studied. For panels with aspect ratios typical of those found in aircraft, results indicate that predominately axial structural modes couple most efficiently to the acoustic modes of the enclosure. The effects of the position of the curved panel on the cylinder are also studied. Structural acoustic coupling is found to not be significantly affected by varying panel position. The impact of the findings of this study on structural acoustic control design is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.