Abstract
The point spread function (PSF) is of central importance in the image restoration of three-dimensional image sets acquired by an epifluorescent microscope. Even though it is well known that an experimental PSF is typically more accurate than a theoretical one, the noise content of the experimental PSF is often an obstacle to its use in deconvolution algorithms. In this paper we apply a recently introduced noise suppression method to achieve an effective noise reduction in experimental PSFs. We show with both simulated and experimental three-dimensional image sets that a PSF that is smoothed with this method leads to a significant improvement in the performance of deconvolution algorithms, such as the regularized least-squares algorithm and the accelerated Richardson-Lucy algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.