Abstract

A nanomechanical resonator coupled to a tunnel junction is studied. The oscillator modulates the transmission of the junction, changing the current and the noise spectrum. The influence of the oscillator on the noise spectrum of the junction is investigated, and the noise spectrum is obtained for arbitrary frequencies, temperatures, and bias voltages. We find that the noise spectrum consists of a noise floor and a peaked structure with peaks at zero frequency, the oscillator frequency, and twice the oscillator frequency. The influence of the oscillator vanishes if the bias voltage of the junction is lower than the oscillator frequency. We demonstrate that the peak at the oscillator frequency can be used to determine the oscillator occupation number, showing that the current noise in the junction functions as a thermometer for the oscillator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.