Abstract

Knowing a quantum system's environment is critical for its practical use as a quantum device. Qubit sensors can reconstruct the noise spectral density of a classical bath, provided long enough coherence time. Here we present a protocol that can unravel the characteristics of a more complex environment, comprising both unknown coherently coupled quantum systems, and a larger quantum bath that can be modeled as a classical stochastic field. We exploit the rich environment of a Nitrogen-Vacancy center in diamond, tuning the environment behavior with a bias magnetic field, to experimentally demonstrate our method. We show how to reconstruct the noise spectral density even when limited by relatively short coherence times, and identify the local spin environment. Importantly, we demonstrate that the reconstructed model can have predictive power, describing the spin qubit dynamics under control sequences not used for noise spectroscopy, a feature critical for building robust quantum devices. At lower bias fields, where the effects of the quantum nature of the bath are more pronounced, we find that more than a single classical noise model are needed to properly describe the spin coherence under different controls, due to the back action of the qubit onto the bath.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call