Abstract

Deep learning has been employed in various scientific fields and has provided promising results. In this study, a deep learning classifier was implemented to improve the quality of data obtained from a time projection chamber. Digital waveforms of the detected signals were classified into the following three categories: particles, noises, and particles piled up with noises. A simple 1-dimensional convolutional neural network was developed for the classification. The model demonstrated an excellent performance on the test dataset. Its practical performance was also examined using track images and particle identification plots by comparing the original and clean data without the noise signals. The comparison clearly showed that the deep learning model improved the quality of data. The current study presents an effective application of the deep learning model for the time projection chamber data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.