Abstract

We define a dynamical simple symmetric random walk in one dimension, and show that there almost surely exist exceptional times at which the walk tends to infinity. This is in contrast to the usual dynamical simple symmetric random walk in one dimension, for which such exceptional times are known not to exist. In fact we show that the set of exceptional times has Hausdorff dimension 1/2 almost surely, and give bounds on the rate at which the walk diverges at such times. We also show noise sensitivity of the event that our random walk is positive after n steps. In fact this event is maximally noise sensitive, in the sense that it is quantitatively noise sensitive for any sequence varepsilon _n such that nvarepsilon _nrightarrow infty . This is again in contrast to the usual random walk, for which the corresponding event is known to be noise stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.