Abstract
We analyze the performance of the Fourier plane nonlinear filters in terms of signal-to-noise ratio (SNR). We obtain a range of nonlinearities for which SNR is robust to the variations in input-noise bandwidth. This is shown both by analytical estimates of the SNR for nonlinear filters and by experimental simulations. Specifically, we analyze the SNR when Fourier plane nonlinearity is applied to the input signal. Using the Karhunen-Loève series expansion of the noise process, we obtain precise analytic expressions of the SNR for Fourier plane nonlinear filters in the presence of various types of additive-noise processes. We find a range of nonlinearities that need to be applied that keep the output SNR of the filter stable relative to changes in the noise bandwidth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.