Abstract
While i-vectors with probabilistic linear discriminant analysis (PLDA) can achieve state-of-the-art performance in speaker verification, the mismatch caused by acoustic noise remains a key factor affecting system performance. In this paper, a fusion system that combines a multi-condition signal-to-noise ratio (SNR)-independent PLDA model and a mixture of SNR-dependent PLDA models is proposed to make speaker verification systems more noise robust. First, the whole range of SNR that a verification system is expected to operate is divided into several narrow ranges. Then, a set of SNR-dependent PLDA models, one for each narrow SNR range, are trained. During verification, the SNR of the test utterance is used to determine which of the SNR-dependent PLDA models is used for scoring. To further enhance performance, the SNR-dependent and SNR-independent models are fused using linear and logistic regression fusion. The performance of the fusion system and the SNR-dependent system is evaluated on the NIST 2012 speaker recognition evaluation for both noisy and clean conditions. Results show that a mixture of SNR-dependent PLDA models perform better in both clean and noisy conditions. It was also found that the fusion system is more robust than the conventional i-vector/PLDA systems under noisy conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.