Abstract

Complex-valued Associative Memory (CAM) is an advanced model of Hopfield Associative Memory. The CAM is based on multi-state neurons and has the high ability of representation. Lee proposed gradient descent learning for the CAM to improve the storage capacity. It is based on only the phases of input signals. In this paper, we propose another type of gradient descent learning based on both the phases and the amplitude. The proposed learning method improves the noise robustness and accelerates the learning speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.