Abstract

The extreme learning machine (ELM) concept provides some effective training algorithms to construct single hidden layer feedforward networks (SHLFNs). However, the conventional ELM algorithms were designed for the noiseless situation only, in which the outputs of the hidden nodes are not contaminated by noise. This paper presents two noise-resistant training algorithms, namely noise-resistant incremental ELM (NRI-ELM) and noise-resistant convex incremental ELM (NRCI-ELM). For NRI-ELM, its noise-resistant ability is better than that of the conventional incremented ELM algorithms. To further enhance the noise resistant ability, the NRCI-ELM algorithm is proposed. The convergent properties of the two proposed noise resistant algorithms are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.