Abstract

Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum computing. However, the practical implementation of existing QPF algorithms in today's noisy-intermediate-scale quantum (NISQ) era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating current (AC) power flow formulation, which enables QPF using short-depth quantum circuits; (2) NISQ-compatible QPF solvers based on the variational quantum linear solver (VQLS) and modified fast decoupled power flow; and (3) an error-resilient QPF scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for solving practical power flow on IBM's real, noisy quantum computers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.