Abstract

In Medical Diagnostic, Magnetic Resonance Images play a major role. Magnetic Resonance images are normally corrupted by random noise from the measurement process complicating the automatic feature extraction and analysis of clinical data. Because of this reason noise removal methods have been customarily applied to improve MR image quality. This work proposed a new scheme based on applying a series of filters, each used to modify the estimate into greater agreement, so that the output converges to a stable estimate providing noise free image. In this work, we have introduced a novel hybrid filter to reduce random noise in MR images by the combination of Kernel, Sobel and Low-pass (KSL) filtering techniques. The proposed method has been implemented using Matlab and compared with related state of art methods over synthetic and real clinical MR images showing a superior performance in all cases analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.