Abstract

Noise stemming from mechanical vibration, electronic noise, or low frequency (1/f power spectrum) inherent in the tunneling process, often limits the resolution, speed, or range of application of scanning tunneling microscopy (STM). We demonstrate a technique for minimizing the effect of these noise sources on the STM image. In our method, the tunneling tip is vibrated parallel to the sample surface at a frequency f0, above that of the feedback response frequency. Two signals are obtained simultaneously: the conventional topography, and a differential image corresponding to the amplitude of current modulation at f0. The resultant ac signal can be simply related to the normal STM topographic image, with significant improvement in the signal-to-noise ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.