Abstract
We present a novel approach for single-channel noise reduction of speech signals contaminated by additive noise. In this approach, the system requires speech samples to be uttered in advance by the same speaker as that of the input signal. Speech samples used in this method must have enough phonetic variety to reconstruct the input signal. In the proposed method, which we refer to as referential reconstruction, we have used a small database created from examples of speech, which will be called reference signals. Referential reconstruction uses an example-based approach, in which the objective is to find the candidate speech frame which is the most similar to the clean input frame without noise, although the input frame is contaminated with noise. When candidate frames are found, they become final outputs without any special processing. In order to find the candidate frames, a correlation coefficient is used as a similarity measure. Through automatic speech recognition experiments, the proposed method was shown to be effective, particularly for low-SNR speech signals corrupted with white noise or noise in high-frequency bands. Since the direct implementation of this method requires infeasible computational cost for searching through reference signals, a coarse-to-fine strategy is introduced in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.