Abstract
To evaluate the noise reduction effect of deep learning-based reconstruction algorithms in thin-section chest CT images by analyzing images reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and deep learning image reconstruction (DLIR) algorithms. The chest CT scan raw data of 47 patients were included in this study. Images of 0.625 mm were reconstructed using six reconstruction methods, including FBP, ASIR hybrid reconstruction (ASIR50%, ASIR70%), and deep learning low, medium and high modes (DL-L, DL-M, and DL-H). After the regions of interest were outlined in the aorta, skeletal muscle and lung tissue of each group of images, the CT values, SD values and signal-to-noise ratio (SNR) of the regions of interest were measured, and two radiologists evaluated the image quality. CT values, SD values and SNR of the images obtained by the six reconstruction methods showed statistically significant difference ( P<0.001). There were statistically significant differences in the image quality scores of the six reconstruction methods ( P<0.001). Images reconstruced with DL-H have the lowest noise and the highest overall quality score. The model based on deep learning can effectively reduce the noise of thin-section chest CT images and improve the image quality. Among the three deep-learning models, DL-H showed the best noise reduction effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.