Abstract

For pt.I see ibid., vol.39, no.5, p.833-46 (1994). In pt.I the authors derived a theoretical formulation for estimating the statistical properties of images reconstructed using the iterative maximum-likelihood expectation-maximization (ML-EM) algorithm. To gain insight into this complex problem, two levels of approximation were considered in the theory. These techniques revealed the dependence of the variance and covariance of the reconstructed image noise on the source distribution, imaging system transfer function, and iteration number. Here, a Monte Carlo approach was taken to study the noise properties of the ML-EM algorithm and to test the predictions of the theory. The study also served to evaluate the approximations used in the theory. Simulated data from phantoms were used in the Monte Carlo experiments. The ML-EM statistical properties were calculated from sample averages of a large number of images with different noise realizations. The agreement between the more exact form of the theoretical formulation and the Monte Carlo formulation was better than 10% in most cases examined, and for many situations the agreement was within the expected error of the Monte Carlo experiments. Results from the studies provide valuable information about the noise characteristics of ML-EM reconstructed images. Furthermore, the studies demonstrate the power of the theoretical and Monte Carlo approaches for investigating noise properties of statistical reconstruction algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.