Abstract
The performance of magnetic recording systems that include conventional modulation codes combined with multiple parity bits is studied. Various performance measures, including bit error rate at the output of time inverse precoder, byte error probability at the input of the Reed-Solomon (RS) decoder and sector error rate, are used to evaluate the performance of various coding/detection schemes. Suboptimum detection/decoding schemes consisting of a 16-state noise-predictive maximum-likelihood (NPML) detector followed by parity-based noise-predictive post-processing, and maximum-likelihood sequence detection/decoding on the combined channel/parity trellis are considered. For conventional modulation codes, it is shown that although the dual-parity post-processor gains 0.5 dB over the single-parity post-processor in terms of bit- and byte-error-rate performance, the sector-error-rate performance of both schemes is almost the same. Furthermore, the sector-error-rate performance of optimum 64-state combined channel/parity detection for the dual-parity code is shown to be approximately 0.1 dB better than that of optimum 32-state combined channel/parity detection for the single-parity code. These performance gains can be even more substantial if appropriate coding techniques that eliminate certain error events and minimize error burst length or multiparity codes in conjunction with combined parity/channel detection are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.