Abstract

Due to its noninvasive character, optical coherence tomography (OCT) has become a popular diagnostic method in clinical settings. However, the low-coherence interferometric imaging procedure is inevitably contaminated by heavy speckle noise, which impairs both visual quality and diagnosis of various ocular diseases. Although deep learning has been applied for image denoising and achieved promising results, the lack of well-registered clean and noisy image pairs makes it impractical for supervised learning-based approaches to achieve satisfactory OCT image denoising results. In this paper, we propose an unsupervised OCT image speckle reduction algorithm that does not rely on well-registered image pairs. Specifically, by employing the ideas of disentangled representation and generative adversarial network, the proposed method first disentangles the noisy image into content and noise spaces by corresponding encoders. Then, the generator is used to predict the denoised OCT image with the extracted content features. In addition, the noise patches cropped from the noisy image are utilized to facilitate more accurate disentanglement. Extensive experiments have been conducted, and the results suggest that our proposed method is superior to the classic methods and demonstrates competitive performance to several recently proposed learning-based approaches in both quantitative and qualitative aspects. Code is available at: https://github.com/tsmotlp/DRGAN-OCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.