Abstract

In this paper, the noise performances of 1.5 um correlated photon pair generations based on spontaneous four wave-mixing in three types of fibers, i.e., dispersion shifted fiber, highly nonlinear fiber, and highly nonlinear microstructure fiber are investigated experimentally. Result of the comparison shows that highly nonlinear microstructure fiber has the lowest Raman noise photon generation rate among the three types of fibers while correlated photon pair generation rate is the same. Theoretical analysis shows that the noise performance is determined by the nonlinear index and Raman response of the material in fiber core. The Raman response raises with increasing doping level, however, the nonlinear index is almost unchanged with it. As a result, highly nonlinear microstructure fiber with pure silica core has the best noise performance and has great potential in practical sources of correlated photon pairs and heralded single photons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.