Abstract

McEliece cryptosystem is expected to be the next generation of the cryptographic algorithm due to its ability to resist quantum computing attacks. Few research studies have combined it with reversible data hiding in the encrypted domain (RDH-ED). In this article, we analysed and proved that there is a redundancy in the McEliece encryption process that is suitable for embedding. Then, a noise modulation-based scheme is proposed, called NM-RDHED, which is suitable for any signal and not only for images. The content owner scrambles the original image and then encrypts it with the receiver’s public key. The data hider generates a load noise by modulating additional data. After that, the load noise is added to the encrypted image, which achieves the data embedding. The reconstructed image is without any distortion after the direct decryption of the marked image, and the extracted data are no errors. The experimental results demonstrate our scheme has a higher embedding rate and more security, which is superior to existing schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call