Abstract

In magnetic resonance imaging (MRI), noise is a limiting factor for higher spatial resolution and a major cause of prolonged scan time, owing to the need for repeated scans. Improving the signal-to-noise ratio is therefore key to faster and higher-resolution MRI. Here we propose a method for mapping and reducing noise in MRI by leveraging the inherent redundancy in complex-valued multi-channel MRI data. Our method leverages a provably optimal strategy for shrinking the singular values of a data matrix, allowing it to outperform state-of-the-art methods such as Marchenko-Pastur PCA in noise reduction. Our method reduces the noise floor in brain diffusion MRI by 5-fold and remarkably improves the contrast of spiral lung 19F MRI. Our framework is fast and does not require training and hyper-parameter tuning, therefore providing a convenient means for improving SNR in MRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call