Abstract
We consider the Truscott–Brindley system of interacting phyto- and zooplankton populations with a weak Allee effect. We add a random noise to the parameter of the prey carrying capacity, and study how the noise affects the dynamic behavior of this nonlinear prey–predator model. Phenomena of the stochastic excitement and noise-induced shifts in zones of the Andronov–Hopf bifurcation and Canard explosion are analyzed on the base of the direct numerical simulation and stochastic sensitivity functions technique. A relationship of these phenomena with transitions between order and chaos is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.