Abstract

In subalpine forests dominated byAbiesspecies in Japan and northeastern United States, trees show traveling wave of regeneration with many striped zones of tree dieback, moving downwind at a constant rate. Previous theoretical studies have demonstrated that a very simple model can generate wave-like spatio-temporal patterns of tree regeneration in a lattice-structured habitat with each site occupied by a cohort of trees. A cohort taller than the average height of its windward neighbor experiences stand-level dieback in the next time step and the height becomes zero. Otherwise the cohort increases its height at a constant rate. Starting from a random initial pattern, this simple deterministic model can generate a saw-toothed pattern that moves downwind at a constant rate, but the distance between adjacent dieback zones has a large variance. In this paper, we study the effects of “noises” in tree dieback rules in two forms which help to generate more regular patterns: (1) additional random disturbances at a low rate, which change the size of “clusters” (defined as a group of cohorts between adjacent dieback zones) by splitting a large cluster into two or by merging a small one with a neighbor, and (2) the stochastic rule of tree dieback, represented by the probability of dieback in unit time being a sigmoidal function of the difference in the tree height between the site and the windward neighbors. These noises are effective both for one-dimensional and two-dimensional models, but spatial patterns are much more regular in the two-dimensional model than in the one-dimensional model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.