Abstract

In the present work, regularity of the pores generated during the electrochemical etching of silicon wafer is analyzed. The wafer-electrolyte (ethanolic hydrofluoric acid) composite is placed in an electrochemical cell operated galvanostatically at a fixed (set-point) anodic current. This set-point current is subsequently perturbed by a sub-threshold periodic current signal. Numerous experiments were performed for diverse experimental configurations. Some of the experimental parameters varied were hydrofluoric concentration, set-points, and the properties of the input periodic signal (i.e., duty cycle and amplitude). The regularity of the generated pore size distribution was quantified by calculating the spatial normalized variance (NV). For certain experimental configurations, as described later, the phenomena of Periodic Stochastic Resonance (PSR) could be provoked. In PSR, enhanced regularity of the Porous Silicon nanostructures for an optimal HF concentration is observed. Consequently, the spatial NV versus the HF concentration curve exhibits a unimodal profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call