Abstract
We study the effects of noise on the Lorenz equations in the parameter regime admitting two stable fixed point solutions and a strange attractor. We show that noise annihilates the two stable fixed point attractors and evicts a Hopf-bifurcation-like sequence and transition to chaos. The noise-induced oscillatory motions have very well defined period and amplitude, and this phenomenon is similar to stochastic resonance, but without a weak periodic forcing. When the noise level exceeds certain threshold value but is not too strong, the noise-induced signals enable an objective computation of the largest positive Lyapunov exponent, which characterize the signals to be truly chaotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.