Abstract

Abstract Noise-induced dynamics is explored in a Josephson junction system driven by multiplicative and additive trichotomous noises in this paper. Under the adiabatic approximation, the analytical expression of average output current for the Josephson junction is obtained, which can be used to characterize stochastic resonance (SR). If only the additive trichotomous noise is considered, the large correlation time of additive noise can induce the suppression and the SR in the curve of average output current. When the effects of both multiplicative and additive trichotomous noises are considered, two pronounced peaks exist in the curves of average output current for large multiplicative noise amplitude and optimal additive noise intensity. That is, the stochastic multi-resonance phenomenon is observed in this system. Moreover, the curve of average output current appears a single peak as a function of multiplicative noise intensity, which disappears for the case of small fixed additive noise amplitude. Especially, the mean first-passage time (MFPT) as the function of additive trichotomous noise intensity displays a non-monotonic behavior with a maximum for the large multiplicative noise amplitude, which is called the phenomenon of the noise enhanced stability (NES).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call