Abstract

We report on measurements of first-passage-time distributions associated with current switching in weakly coupled GaAs/AlAs superlattices driven by shot noise, a system that is both far from equilibrium and high dimensional. Static current-voltage (I-V) characteristics exhibit multiple current branches and bistability; precision, high-bandwidth current switching data are collected in response to steps in the applied voltage to final voltages V1 near the end of a current branch. For a range of V1 values, the measured switching times vary stochastically. At short times (≲10 μs), the switching time distributions decay exponentially, while at longer times the distributions develop nonexponential tails that follow an approximate power law over several decades. The power law decay behavior is attributed to the presence of multiple switching pathways, which may arise from small spatial variations in the superlattice growth parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.